Introduction

• Impact of Wes Eckenfelder
 ▫ Personal
 ▫ Professional
Approach

• Control of Processes
 ▫ Equilibrium
 ▫ Kinetics
 ▫ Mixed

• Mechanistic Models
 ▫ Material balances
 ▫ Process descriptions
Overview

- Critical Processes (contaminant properties)
- Simple Model (contaminant properties + plant characteristics)
- Contaminant Fate (model, experience)
- Summary
Critical Processes

• Volatilization
 ▫ Equilibrium
 • Henry’s Law: $C_{\text{air}} = H C$
 • Vapor pressure/solubility
 • H affected by
 • temperature
 • other constituents
 • pH (pK_a)
Critical Processes

- **Volatilization**
 - **Kinetics**
 - \(r_{\text{vol}} = K_{\text{la}} \frac{(C - C_{\text{air}})}{H} \)
 - \(K_{\text{la}} \) affected by
 - temperature
 - other constituents (\(\alpha \))
Critical Processes

• **Volatilization**
 - **Mixed control model**
 - \(C_{air} = \frac{C_{0\ air}}{1 + (Q_{air} H / Q) (1 - \exp(- \varphi))} \) \((\text{M&}E, \text{Tchobanoglous}) \)
 - “saturation factor”
 - \(\varphi = \frac{VK_{la}}{(Q_g H)} \)
 - \(\varphi = (\text{constants}) \text{OTE}/\text{H} \)
 - mass flow = \(Q_{air} C_{air} = (\text{if equilibrium}) Q_{air} HC \)
Critical Processes

• Sorption
 ▫ Terminology
 • adsorption
 • absorption
 • sorption
Critical Processes

- Sorption
 - Equilibrium
 - \(q = K_d C \)
 - \(K_d \) (500 L/kg, 50% sorbed at 2000 mg/L SS) (Verlicchi, Ternes)
 - Temperature/\(K_a \)
 - Correlations
 - \(K_{ow} \) (\(\log K_{ow} < 2.5, 2.5-4, >4.0 \)) (Jones, Birket)
 - solubility
 - molecular weight
 - polarity
Critical Processes

- Sorption
 - Kinetics
 - \(r_{sorb} = k_s X(C - q/K_d) \)
 - Control
 - Equilibrium in AS (Ternes)
 - high X
 - long enough HRT
 - Equilibrium in primary – long previous contact
Critical Processes

- Biodegradation
 - Terminology
 - biodegradation
 - mineralization
 - co-metabolism
 - Equilibrium
 - limited applicability
 - chemical redox equilibrium
Critical Processes

- Biodegradation

 - Kinetics
 - \(r_{bio} = k_{bio} \times C \)
 - Monod \(r_{bio} = \mu_{max} \times C / (K + C) \)
 - Rules of thumb (Joss)
 - < 0.1 L/g-d: hardly biodegradable
 - 0.1 – 1.0 L/g-d: moderately biodegradable
 - > 1.0 L/g-d: highly biodegradable
Critical Processes

- Biodegradation
 - Kinetics
 - k_{bio}
 - temperature
 - history of biomass
 - chain length
 - chain branching
 - substitution (halogens, sulfonate, methoxy, nitro)
 - size/solubility/K_{ow}
 - Control - Kinetics
Critical Processes

• Data sources
 • Pomies et al. (micropollutants)
 • Omil et al. (micropollutants)
 • Birkett and Lester (endocrine disrupting compounds)
 • Verlicchi et al. (pharmaceuticals)
 • Petrovic and Barceló (surfactants)
 • Choubert et al. (removals)
 • Martin Ruel, et al. (removals)
Simple Model

• Assumptions
 ▫ Completely mixed basin
 ▫ Diffused aeration
 ▫ Control
 • volatilization – equilibrium
 • sorption – equilibrium
 • biodegradation – kinetic
 ▫ Steady state
 ▫ Trace contaminant
Simple Model

• Derivation
 ▫ **Material balance:** \(\text{Acc} = \text{In} - \text{Out} + \text{Form} - \text{Lost} \)
 ▫ **Processes at SS:** \(o = QC^o - (QC + Q_{\text{air}}C_{\text{air}} + m_xq) + o - V r_{\text{bio}} \)
 ▫ **Process Eqns:** \(o = QC^o - (QC + Q_{\text{air}}HC + m_xK_dC) + o - V k_{\text{bio}}XC \)
 ▫ **Rearrange:** \(C = C^o/(1 + Q_{\text{air}}H/Q + m_xK_d/Q + k_{\text{bio}}X HRT) \)
 ▫ **Biokinetics:** \(C = C^o/[1+Q_{\text{air}}H/Q+Y_{\text{obs}}(S^o-S)(K_d+k_{\text{bio}} SRT)] \)
Simple Model

• **Factors** \(C = C^0/[1 + Q_{air} \frac{H}{Q} + Y_{obs}(S^0 - S)(K_d + k_{bio} SRT)] \)
 - **Volutilization:** \(Q_{air} \frac{H}{Q} \)
 - if \(Q_{air} \frac{H}{Q} = 1 \), \((Q_{air}/Q = 22.5) \)
 - \(H = 0.044 \)
 - \(H' = 1.1 \text{ L-atm/mole} \)
 - **Compare** (ME Tchobanoglous)

<table>
<thead>
<tr>
<th>Compound</th>
<th>H'</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroethene</td>
<td>64</td>
<td>2.62</td>
</tr>
<tr>
<td>Tetrachloromethane</td>
<td>28.6</td>
<td>1.17</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>28.5</td>
<td>1.16</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>15.1</td>
<td>0.62</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>11.7</td>
<td>0.48</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>8.43</td>
<td>0.34</td>
</tr>
<tr>
<td>Toluene</td>
<td>6.44</td>
<td>0.26</td>
</tr>
<tr>
<td>Benzene</td>
<td>5.49</td>
<td>0.22</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>5.1</td>
<td>0.21</td>
</tr>
<tr>
<td>c-1,2-Dichloroethene</td>
<td>4.08</td>
<td>0.17</td>
</tr>
<tr>
<td>t-1,2-Dichloroethene</td>
<td>4.95</td>
<td>0.17</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>3.7</td>
<td>0.15</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>3.6</td>
<td>0.15</td>
</tr>
<tr>
<td>Trichloromethane</td>
<td>3.1</td>
<td>0.13</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>3.04</td>
<td>0.12</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>2.75</td>
<td>0.11</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>2.12</td>
<td>0.09</td>
</tr>
<tr>
<td>α-Dichlorobenzene</td>
<td>1.7</td>
<td>0.07</td>
</tr>
<tr>
<td>1,2-Dichlorethane</td>
<td>1.14</td>
<td>0.05</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>0.84</td>
<td>0.03</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>0.769</td>
<td>0.03</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>0.629</td>
<td>0.03</td>
</tr>
<tr>
<td>Tribromomethane</td>
<td>0.584</td>
<td>0.02</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.42</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Simple Model

• **Factors** \(C = C^0 / [1 + Q_{air} H / Q + Y_{obs} (S^0 - S)(K_d + k_{bio} SRT)] \)

 ▫ **Sorption:** \(Y_{obs} (S^0 - S)K_d \)

 ▪ if \(Y_{obs} (S^0 - S)K_d = 1 \)

 ▪ \(K_d = 17,500 \text{ L/kg} \)
 \((Y_{obs} = 0.3, (S^0 - S) = 190 \text{ mg/L}) \)

 ▪ **Compare** (Pomies)

 ▫ Estradiol, 170-2000
 ▫ Anthracene, 1493
 ▫ Pentachlorophenol, 2800
 ▫ Nonylphenol, 15,000
 ▫ Cd, 39,800
Simple Model

- **Factors** \(C = C_0 / [1 + Q_{\text{air}} H/Q + Y_{\text{obs}} (S_0 - S)(K_d + k_{\text{bio}} SRT)] \)
 - **Biodegradation**: \(Y_{\text{obs}} (S_0 - S) k_{\text{bio}} SRT \)
 - if \(Y_{\text{obs}} (S_0 - S) k_{\text{bio}} SRT = 1 \)
 - \(k_{\text{bio}} = 1.75 \) L/g-d \((Y_{\text{obs}} = 0.3, (S_0 - S) = 190 \) mg/L, SRT = 10 d)
 - **Compare** (Pomies, with \(X = 2 \) g/L)
 - Estradiol, 6-350
 - Ibuprofen, 1.3-38
 - Octylphenol, 1.1 - 32
Contaminant Fate

• Primary Sedimentation
 ▫ Sorption primary process
 ▫ Equilibrium control likely
 ▫ Removal = $SS^0 \cdot R_{ss} \cdot K_d / (1 + SS^0 \cdot K_d)$
 ▫ Observations
 • 25% removal of typical surfactants (Petrovic)
 • Little removal reported
 • $K_d < 500$ L/kg (Ternes)
 (5% removal for $SS^0 = 200$ mg/L, $R_{ss} = 0.60$)
 • $\log K_{ow} < 4.0$ (Birkett) ($K_d \approx 1000 – 3000$ L/Kg)
 (10-22% removal)
Contaminant Fate

- **Activated Sludge**
 - **SRT**
 - Promotes biodegradation
 - \(Y_{\text{obs}} (S^o - S) k_{\text{bioSRT}} \)
 - Population changes
 - Nitrifiers (co-metabolism)
 - Slow growing heterotrophs
Contaminant Fate

• Activated Sludge
 ▫ SRT
 • Promotes volatilization ($Q_{\text{air}}H/Q$)
 • more oxygen required, Q_{air} increases,
 ▫ less synthesis more oxidation
 ▫ nitrification oxygen demand
 ▫ mitigated by higher α
Contaminant Fate

- **Activated Sludge**
 - **SRT**
 - Hinders sorption \(Y_{\text{obs}}(S^o - S)K_d \)
 - less solids synthesized
 - Possible change in solids ability to sorb

\[\text{Substrate} \rightarrow \text{Energy} \]
\[\text{Energy} \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]
\[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{Nutrients} \rightarrow \text{Biomass} \]

\[\text{O}_2 \rightarrow \text{Substrate} \]
Contaminant Fate

- Activated Sludge
 - SRT
 - Observations
 - Generally removals increase

(Zeng, Pomies, Leu)
Contaminant Fate

- Activated Sludge
 - SRT
 - Observations
 - Some correlations with nitrification (Verlicchi, Zhou, Vieno)
 - co-metabolism (Roh, Sipma)
 - nitrification inhibitors reduce removal (Batt, Roh)
 - removals related to extent of nitrification (Vieno)
Contaminant Fate

• Activated Sludge
 ▫ Aeration Intensity
 • Diffused (for equilibrium: $Q_{air}H/Q$)
 • bubble size
 • depth
 • SRT (m_{o2})
 ▫ Surface (K_{la} HRT)
 • may promote low H release vs. diffused
 ▸ kinetic control
 ▸ remove equilibrium limit on low H
 $\varphi = VK_{la}/(Q_gH)$
 • SRT (m_{o2})
Contaminant Fate

- **Activated Sludge**
 - Mixing (plug flow to completely mixed)
 - high C, higher volatilization ($Q_{air \cdot HC}$)
 - Enhanced P removal (low SRT)
 - Promotes sorption ($Y_{obs}(S^o - S)$)
 - Reduces biodegradation ($Y_{obs}(S^o - S)SRT$)
 - Reduces volatilization ($Q_{air \cdot HC}$)
 - Temperature
 - Promote biodegradation, volatilization
 - Hinder sorption
Contaminant Fate

- **Activated Sludge**
 - Membrane biological reactors (Siegrist)
 - Lower effluent SS, promote sorption for high K_d
 - Higher SRT (+bio., + vol., - sorption)
 - Q_{air}/Q higher, promote volatilization
 - Population distribution different
- **Other biological treatment** – similar (Choubert)
Contaminant Fate

- Disinfection
 - Chlorination
 - Free chlorine
 - potential oxidation
 - potential byproduct formation
 - Combined chlorine
 - general reduced reactivity
 - potential to form NDMA
Contaminant Fate

• Disinfection
 ▫ Ultraviolet
 • Potential photolysis
 • Potential reaction with products of photolysis
Summary

- Fate determined by
 - Contaminant Properties (H, K_d, k_{bio})
 - Plant Characteristics (SRT, Q_{air}, aeration type)
Summary

- Indirect effects possible
 - SRT/$m_{o2}/Q_{air}/$volatilization
 - SRT/$m_{ss}/$sorption
 - SRT/nitrification/biodegradation
 - Basin depth/$Q_{air}/$volatilization
 - pH change/$H, K_d/volatilization, sorption$
Summary

• Mechanistic models are useful
References

References

