Aeration Basics – the Bug's Eye View

Leonard E. Ripley, Ph.D., P.E., BCEE Senior Environmental Engineer

Freese and Nichols, Inc.

WEAT Electrical & Instrumentation Seminar March 20, 2019

Why Do We Aerate?

>Supply process oxygen:

- 1. Oxidation of organics (BOD)
- 2. Endogenous respiration

Suspend mixed liquor solids

Biochemical Oxygen Demand ("BOD")

BOD has two components:

1. Carbonaceous BOD ("CBOD") is oxygen required for oxidation of <u>carbon</u>: $C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O$ Carried out by heterotrophic bacteria ... relatively rapid process

2. Nitrogenous BOD is oxygen required for oxidation of ammonia to nitrate: $NH_3 + O_2 \rightarrow NO_2 + O_2 \rightarrow NO_3 + H_2O$

Carried out by "nitrifiers" ... slow growing, relatively sensitive bacteria

Endogenous Respiration

Without wastewater organics for food:

Bacteria coast and respire "endogenously" (resting rate)

- Bacteria eventually die, rupture (lysis), and provide food for their relatives
- This is the main process in aerobic digestion, but it also is important in aeration basins, especially if they are organically underloaded

TCEQ Chapter 217 Design Criteria for DO

Oxygen Requirements (O_2R) of wastewater: An aeration system must be designed to provide a minimum dissolved oxygen concentration in the aeration basin of 2.0 milligrams per liter (mg/L).

Note:

This is at the <u>max</u> design loading in the <u>future</u>.

Mixing

Keep mixed liquor solids in suspension:

Air flow rate must be

- > 20 scfm/1000 cu ft for course bubble diffusers,
- > 0.12 scfm/sq ft for fine bubble diffusers

Mechanical mixing must provide

> 0.75 hp/1000 cu ft

Swing zone can be aerated or just mixed

How Much Oxygen is Necessary?

Depends mainly on:

>Wastewater flow rate, cBOD & ammonia concentrations

 \rightarrow organic loading rates

Other factors:

Characteristics of BOD: degrades readily or slowly?

Solids retention time (sludge age)

➢ Basin configuration -- selectors?

Why Aeration is Expensive

- 1. Even highly efficient aeration is not very efficient in actually <u>transferring</u> oxygen into solution.
- 2. Besides pushing oxygen into the aeration basin, we also have to pressurize the accompanying nitrogen.

Example: with 33% O₂ transfer efficiency:
1 lb O₂ transferred requires 3 lb O₂ applied
3 lb O₂ applied carries 11 lb nitrogen
Total <u>air</u> required to transfer 1 lb O₂ = 14 lb

How Much <u>Air</u> is Necessary?

> Depends mainly on:

 \geq Wastewater flow rate, BOD & ammonia concentrations \rightarrow loadings

>Other factors:

Characteristics of BOD: readily or slowly degradable

Solids retention time (sludge age)

Transfer efficiency of diffusers

DO concentrations

Wastewater temperature

Presence of surfactants and/or grease

Basin configuration (selectors?) and AB volume

Air temperature and humidity

WHAT CAN YOU CONTROL?

Aeration Control Overview (simplified)

Aeration Control Overview (simplified)

Possible Game-Changing Technology

Floating hood collects off-gas and analyzes residual O₂ and CO₂ content. Calculates:

- Oxygen Uptake Rate (OUR)
- Oxygen Transfer Efficiency

Expensive ... no units in Texas at this time.

Example AB Oxygen Uptake Patterns (Dallas Water Utilities Central Plant – B Complex)

More Typical AB Oxygen Uptake Pattern

Tapered Aeration

Install diffusers in zones to match oxygen uptake pattern – higher density at influent end of basin.

Example Air Flow Distribution: Leon Creek

Leon Creek Minimum Air Flow Rates

Non-Aeration: Anoxic and Anaerobic Zones

"Anoxic" – with very little, if any, oxygen present. Heterotrophic bacteria substitute nitrate for oxygen in degrading BOD ... Can reduce aeration by 15-20%.

"Anaerobic" – with no oxygen <u>and</u> no nitrate present. Phosphorus Accumulating Bacteria (PAO's) release phosphorus, then take up extra phosphorus in the aerobic zone ... biological phosphorus removal.

Anoxic/Anaerobic Zones for BNR

Anoxic/Anaerobic (BNR) Effects on Aeration

- Can reduce oxygen, and aeration, demand by 15-20%.
- Recycle will even out uptake rate along length of basin.
- Important to minimize returning dissolved oxygen to an anoxic zone.
- Critically important to avoid returning dissolved oxygen to an anaerobic zone.

The "Perfect" Aeration Strategy?

Final (Process) Thoughts ...

- 1. Every plant has large aeration fluctuations hourly, daily, seasonally you'll never reach "perfection".
- 2. Compliance is priority #1, even if you have to waste some air.
- 3. Be diligent about monitoring/maintaining the DO probes.
- 4. Make aeration changes gradually.
- 5. Turndown may require taking AB's out of service.
- 6. DO control may be more important for BNR than for saving energy.

Thank You!

Questions / comments: Leonard E. Ripley, Ph.D., P.E. BCEE Freese and Nichols, Inc. LER@Freese.com